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This work is concerned with the dispersion of a buoyant solute in a straight 
horizontal pipe of circular cross-section where dispersion is affected by mole- 
cular diffusion, the laminar flow along the pipe and density currents. Erdogan 
& Chatwin (1967) have derived an equation for the mean concentration B of a 
buoyant solute using a relatively simple asymptotic model, and have predicted 
that the dispersion induced by buoyancy effects depends on the Pbclet number 
of the flow. In  this part of this study an approximate expression is derived 
for from Erdogan & Chatwin’s equation, and an asymptotic form is obtained 
for the second moment of distributions of buoyant solutes. The examination 
of the second moment leads to a simple, but important, result: the dispersion 
induced by density currents at  large times is small compared with the dispersion 
induced by density currents at  times when transient effects are significant. 

1. Introduction 
This work is concerned with the effects on dispersion of a buoyant solute in a 

straight horizontal pipe of circular cross-section of molecular diffusion, advec- 
tion by laminar flow along the pipe and density currents. The aim of this paper is 
to make a useful prediction from the earlier work on this subject by Erdogan & 
Chatwin (1967). In  part 2, the problem will be considered using a more general 
theory. 

It was first shown by Taylor (1953) that the combined effects of cross- 
sectional diffusion and longitudinal advection make a cloud of solute spread out 
symmetrically about a point moving with the mean flow speed W. Taylor showed 
that, for large times, the cross-sectional mean concentration of a passive marker 
satisfies a diffusion equation with respect to axes moving at  speed W. For smaller 
times when Taylor’s asymptotic theory is not valid, numerical solutions for the 
dispersion of a passive marker have been given by Ananthakrishnan, Gill & 
Barduhn (1965); and Aris (1956) and Chatwin (1970) have improved Taylor’s 
asymptotic theory by describing the approach to the asymptotic state. These 
studies have shown that, for a passive solute, the mean concentration ultimately 
becomes a Gaussian function of distance along the pipe axis. 
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Although this theoretical work has been verified experimentally by Taylor 
(1953) and others, Reejhsinghani, Gill & Barduhn (1966) have shown that the 
relevant experiments are quite sensitive to buoyancy effects. Reejhsinghani 
et al. then described experiments in which the solute was deliberately chosen to 
have a density very close to that of the solvent. In  this way, it was established 
that there is a marked variation in the dispersion of a buoyant marker as the 
PQclet number of the flow changes (the PBclet number P is defined by P = Wa/K, 
where W is the discharge (mean) speed, a is the pipe radius and K is the molecular 
diffusivity). Reejhsinghani et al. finally affirmed the significance of buoyancy 
forces by suggesting them as the cause of the anomalous experimental results 
obtained by Bournia, Coull & Houghton (1961). 

The first analytical model to investigate the effect of density currents on the 
dispersion of contaminants in Poiseuille flow was proposed by Erdogan & Chat- 
win (1967, hereafter called E & C). E & C described the following two particular 
dynamical effects that are introduced by a buoyant, as opposed to a passive, 
marker. 

(i) The solute causes axial density gradients, which induce mean longitudinal 
density currents away from the centre of mass of the dispersing cloud. This 
effect increases the dispersion of the solute. 

(ii) A buoyant solute also causes increased cross-sectional mixing; that is, 
secondary flows in a vertical plane caused by radial and azimuthal variations in 
density. This effect acts to decrease the dispersion. 

E & C investigated these competing effects in a time-independent model which 
incorporated a uniform axial gradient for the mean concentration. Their model, 
which is the buoyancy-affected analogue of Taylor’s (1953) study, is described in 
$2. E & C suggested, in partial support of the observations of Reejhsinghani 
et al., that the PBclet number of the flow is the significant factor in determining 
whether dispersion is enhanced or decreased with dynamically active markers. 
They predicted that the dispersion would be increased for flows at  low PBclet 
numbers and decreased for flows with large values of this parameter. In  flows with 
values of P near a critical number P, (depending on other parameters of the flow), 
they suggested that buoyant and passive markers would disperse similarly. 

In  the present paper, the analysis of E & C is extended to make several pre- 
dictions. Pirst, an approximate expression is derived for the mean concentration 
profile. To form this approximation, an equation is derived, but not solved, for the 
first term affected by buoyancy forces. The approximation is then used t,o obtain 
the asymptotic form of the first two moments of a distribution of buoyant solute. 

The properties of the moments derived give an interesting conclusion con- 
cerning the amount of dispersion induced by buoyancy effects. (The nth moment 
vn(t) is defined to be 

where C is the concentration and zg is the z co-ordinate of the centre of mass of the 
contaminant cloud in a frame of reference moving at speed W .  In  particular, the 
second moment (the variance) describes the extent to which the cloud has been 
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spread: for example, for the Gaussian profile found by Taylor (1953) for a passive 
solute, the second moment has the asymptotic behaviour v2(t) N constant x t as 
t-tw.) To summarize the results obtained for a buoyant solute, the second 
moment is found to have the asymptotic behaviour 

i ~ ~ f t )  - constant x t + constant + O(t-I), t -+ co. (1.2) 

In  this expression, the term proportional to t is the same as for a passive solute, 
the constant term results from buoyancy-affected dispersion at short and medium 
times, and only the O(t- l )  terms are modified by buoyancy effects at  asymptotic- 
ally large times. E & C’s model thus predicts that the greatest contributions of 
buoyancy forces to the dispersion process occur at times when transient effects 
are significant. It is believed that this conclusion will be of value to workers in 
dispersion research. 

In  the adjacent paper (part 2), the problem of dispersing buoyant contaminants 
is re-examined using a more general time-dependent model. Part 2 describes the 
approach to the asymptotic state and generalizes the work of Chatwin (1970) on 
dispersing passive markers. The results obtained in part 2 show that E & C’s 
relatively simple model gives an excellent description of the dispersion induced a t  
large times by buoyancy effects provided that the Schmidt number of the flow is 
large. (This number is defined in equation (2.14) below and is, in fact, large for 
commonly encountered conditions.) 

2. Equations of motion and the model used by E & C 
The following equations may be used to describe the dispersion of a buoyant 

solute in an incompressible solvent in Poiseuille flow (the moving co-ordinate 
system ( r ,  8, z)  is explained in figure 1) : 

P = P(C). (2.6) 

In  these equations and all the subsequent work, u, v and w denote respectively 
radial, azimuthal and axial velocities in a frame of reference moving at speed W 
and V2 is the two-dimensional Laplacian 

6-2 
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FIGWE 1. The co-ordinate system: (v ,  8 , ~ )  and (T, 8, z )  are, respectively, cylindrical 
polars in a stationary frame and in a frame moving at  the discharge speed W (i.e. 
z = constant + x - Wt) ; 0 = 0 is the upward vertical and OZ is the (horizbntal) axis of the 
pipe. 

Since the velocity components u, v and w should be interpreted as barycentric 
velocities (in the manner described by Green & Naghdi 1969), (2.5) is only an 
approximation to the exact form of the continuity equation for incompressible 
solvents. 

In  their model, E & C assumed that u, v, w and aC/ax were independent of 
t and z ,  which could be valid only if the mean concentration profile had an axially 
uniform gradient. This assumption, leading to a concentration profile of the form 

is the same as that used by Taylor (1953) to discuss the passive-contaminant 
case. E & C assumed that the density of the fluid was given by 

P = Po(1 +aC), (2.8) 

where po and a are constants, independent of concentration; and further, they 
neglected the change in density caused by concentration except in the body-force 
term. That is, they used the Boussinesq approximation. With slightly different 
notation, E & C's equations were 
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ar, ( ? 2;)= az 
ac ( : %) a2 

u u-+-- -aP-++V2w, 

c u-+-- +Paw- = v2c, 
i a  I av 
--(ru)+-- = 0. 
r ar r ae 

(2.11) 

(2.12) 

(2.13) 

(In these equations, E & C's pressure p', axial co-ordinate X and axial velocity 
w - 1 have been replaced by p, W2p, z and w respectively. The velocity components 
(u, v, w) have been non-dimensionalized, so that the actual velocity components 
are (vu/a, vv/a, Ww).) The numbers P, u and R are the parameters on which the 
flow depends, being respectively the PQclet, Schmidt and Rayleigh numbers: 

P = wa/K, CT = Y/K, R = gU3/(VK). (2.14) 

E & C considered only the case where Y and K were constants, independent of 
concentration. 

The set of nonlinear equations (2.9)-(2.13) was solved by E & C using a, per- 
turbation analysis based on the small parameter 

(2.15) 
aC 
a, G = ULX- R/+. 

They found that the flux of solute across cross-sectional planes moving at  speed 
W was 

~ 2 ~ 2  aC 
& = n u 2  - - ( - I+G2Q2) ,  

( 4 8 , )  ax (2.16) 

in which Q2 was given by 

256gP 2 ~ 2 + -  19797 
197120 Q2 = -8448 

E & C then assumed that the flux was unchanged even when aC/aZ was not con- 
stant, and substituted for Q in the equation of conservation of concentration 

na2 aC/at = - aQ/az 

to derive an equation for 6. (This assumption had previously been used by Taylor 
(1953) for passive solutes (a = 0 ) ,  and later proved by Aris (1956) to give correctly 
the leading term in an expansion for 8.) The equation for c obtained by E & C 
was 

(2.18) 

and this equation replaces the diffusion equation which is known to hold for 
passive markers. E & C deduced the relative increase or decrease in dispersion 
owing to buoyancy effects by considering the quantity Q2 in (2.16) as sl function 
of P. 
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3. An approximate distribution for c 

now be derived from (2.18). For convenience, suppose that (2.18) is written as 
An approximate expression for C when buoyancy forces are significant can 

aC a 6  3 g = 2 [ A  + B  (a,) ] , 
where A and B are given by 

A = U2W2/48K = iP2&!*K (&&!* = &) (3.2) 

and B =  -A(  uccR/cT]2 Q2. (3.3) 

The constant M* in (3.2) is introduced to facilitate comparison with later work. 
Now it is expected that, at  large times, (3.1) will admit a solution consisting of 
the Gaussian profile found for passive markers plus other terms, of which some 
result from buoyancy effects at large times. Guided by the work of Taylor (1 953) 
and Chatwin (1970), a suitable representation for c would be 

c N TdlC(I)(X) + . . . + T-%Ccn)(X) + . . . + $B(X,  T ) ,  (3.4) 

where X and T are convenient asymptotic co-ordinates 

X = 2/(2At)&, T = ( 2 A t ) t / P ~  (3.5) 

and C $ ~ ( X ,  T) is the first term representing buoyancy effects. 
If it is assumed that, in (3.1), 

~ ( a C / a ~ ) 3  -g AaBlaz as t -+ CO, (3.6) 

the term $B in (3.4) should be small compared with T-l C(l,(X) for large t, so 
Cc1) will satisfy the equation 
- 

This equation has the simple solution 
- 
0 1 )  = Pexp ( - +X2) ,  

implying that the first term in (3.4), 

exp ( - +X2), (3.7) T - l F ) =  PT-1 

is the Gaussian term originally found by Taylor (1953) for passive markers. 
(It may now be confirmed that (3.6) and (3.7) are consistent for t sufficiently 

4 1  as t + c o  

since S2exp ( -X2) is bounded.) The term $B in (3.4) should therefore satisfy 
the esuation 
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which may be re-written using X and T throughout: 

B a 
q5B = -,-/?~(Pu)-~T-'- ax [X3exp(-$X2)]. (3.8) 

i a  x a  _------- 
TBT T2aX T2aX2 

An expression of the form #B = T-'h(X) (3.9) 

is consistent with (3.8) only if h = 5, whence, using (3.2) and (3.3), h(X) satisfies 
the equation 

(3.10) 

An asymptotic expression for C when buoyancy effects are important therefore 

= PT-l exp ( - 8x2) + P5FV(X) + . . . , (3.11) 

where h(X) is given by (3.10). Clearly this expression is not complete since passive 
markers alone would produce other terms O ( P 2 )  to O ( P 5 )  in (3.11). The term 
P 5 h ( X )  should, however, describe the first contribution to the profile from 
buoyancy effects at large times. 

should include the terms 

4. Asymptotic form of the first two moments 
I n  this section, (3.1) is used to  deduce the asymptotic form of the fist two 

integral moments of c as defined by (1.1). First, the following expressions are 
obtained from (3.1) by some straightforward calculations: 

Now, for large t ,  (3.11) gives an approximate form fop 8, and (4.1) may be used 
to show that 

C dz = constant = pPa( 2n)t. 1s. (4.4) 

(It is easy to prove from (3.10) that 

[" h(S)  dX 

is zero.) Then, since aC/az is an odd function of x (to leading order), (4.2) yields 

-& d (2,) = $ { /Iw x c d x / / ; w  Caz] = 0, 

whence zrr is a constant which can be made zero by a, suitable choice for the origin 
of the moving co-ordinate frame. 
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Finally, by substituting for z(@/az)3 in the second integral in (4.3), it follows 
that 

= 2A + [PPa(27r)*]-l 2BP3(Pa)-l T-4 X4exp ( -+Xz) dX. (4.5) 

Evaluating the integral in this expression, substituting for A and B from (3.2) 
and (3.3), and integrating with respect to time therefore gives 

j I m  

a2 p2 aaR 
VAt) w2 t + constant + M*tK (7) Q, as t -+ 00. (4.6) 

In  this expression, the first two terms have the same form as the corresponding 
terms found by Chatwin (1970) for a passive marker, although the constant 
clearly depends on buoyancy effects at  times when transient effects are signifi- 
cant. The constant in (4.6) could be determined by matching v2(t) with its repre- 
sentation for shorter times. The O(t-l) term in (4.6) is caused by buoyancy 
effects a t  asymptotically large times, and the examination of Q2 as a function of 
P [equation (2.17)] shows how this term can increase or decrease the dispersion 
for particular flow conditions. The important conclusion mentioned in 0 1 
follows immediately from (4.6), that is, the dispersion induced by buoyancy effects 
at short and intermediate times (this quantity is represented by the constant) is  of 
greater order than the dispersion which is induced at asymptotically large times. 

In  conclusion, it is appropriate to make some critical comments. The above 
analysis is of value only if E & C’s work can be justified independently, since the 
derivation of the crucial equation (2.18) rests on an unproved assertion. In  
the simpler, or prototype, case .where passive markers are considered, the in- 
tuitive mathematics used by Taylor (1953) to derive an equation for was 
validated later by Aris (i956) and in more detail by Chatwin (1970). Thus, in the 
present consideration of buoyant solutes, it  is desirable that an independent 
description of the approach to  the asymptotic state be obtained to justify (2.18) 
and the conclusions reached from it. The approach to the asymptotic state has, 
in fact, been considered by the author in the adjacent paper (Barton 1976) and 
the reader is referred to comments contained therein on the accuracy of E & C’s 
asymptotic model. 
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carried out during the tenure of a C.S.I.R.O. Postdoctoral Studentship at the 
University of Cambridge. Further, he would like to thank Dr P. C. Chatwin 
for suggesting this work and Dr J. S. Turner for his comments on a preliminary 
draft. 
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